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Abstract 

The correlation of two Patterson functions whose 
relative orientation is expressed in Eulerian coordi- 
nates gives rise to the rotation function, which 
possesses space-group symmetry. If the z axis is the 
first and last axis of Eulerian rotation then the space 
group of the rotation function depends only on the 
parity of the Patterson symmetry axes parallel and 
perpendicular to z. Symmetry axes in other orienta- 
tions do not produce space-group effects. Nine differ- 
ent cross-rotation space groups occur in 16 settings. 
Self-rotation gives rise to additional symmetry in the 
rotation function and results in a further four space 
groups. The symmetry of a rotation function par- 
ameterized in any other coordinate system may be 
studied by examining the symmetries of the functions 
occurring in the relevant rotation matrix. 

Introduction 

The rotation function (Rossmann & Blow, 1962) has 
found widespread use in defining molecular orienta- 
tions when multiple copies of the same or similar 
molecular fragments occur in different crystallo- 
graphic environments in the same or different crystals. 
The interpretation of the rotation function in Eulerian 
angles often requires an understanding of the space- 
group symmetry of the rotation map. Tollin, Main & 
Rossmann (1966) showed how the general equivalent 
positions of a rotation-function space group could be 
derived from combinations of rotation point-group 
symmetry operations. Rao, Jih & Hartsuck (1980) 
automated this approach by employing a Fortran 
computer program to generate exhaustively the cross- 
rotation equivalent positions that could arise from 
Patterson functions of non-cubic symmetry. 

The purpose of this paper is to give a more general 
discussion of rotation-function symmetry showing 
how it depends on the parity of the Patterson-function 
axes parallel and perpendicular to z. Self-rotation 
functions possess extra symmetry, which appears 
hitherto to have been ignored in the literature. A 
formal derivation of the space-group symmetry of the 
rotation function is best carried out using the methods 
of group theory, which are discussed in the Appendix. 

Origin of rotation-function symmetry 

The space-group symmetry of the rotation function, 
when expressed in Eulerian angles, can arise from 
three possible causes. 

(1) The two-to-one relationship between triplets 
of Eulerian angles [(a,/3, y) and (zr + a , - /3 ,  I t+  y)] 
and the same rotation gives rise to a plane of symmetry 
in the rotation function. 

(2) The point-group symmetry of the Patterson 
functions involved in the rotation study gives rise to 
space-group symmetry provided that the functions 
are appropriately oriented with respect to the 
Eulerian axes. 

(3) In the case of self-rotation, the identity between 
the two Patterson functions itself produces rotation- 
function symmetry. 

In order to discuss these cases in more detail, a 
convention for the use of Eulerian angles must be 
carefully established. We choose that used by Crow- 
ther (1972) in his fast rotation function program. We 
consider a right-handed set of Cartesian axes x, y and 
z. The Patterson density P(x) is rotated first through 
y about the z axis, then through/3 about the y axis 
and then through a about the z axis. Rotations about 
the stationary axes are clockwise as viewed from the 
origin. For visualizing the effect of a series of rotations 
it may be easier to consider the Patterson density as 
stationary. In this case the above rotation may be 
described as a rotation of the coordinate system 
counterclockwise first through y about the z axis, 
then through /3 about the new y axis and finally 
through a about the new z axis. The effect of the 
rotation on the coordinates of a point is determined 
by premultiplication by the matrix R where 

[ ] cos a cos 13 cos y -cos a cos B sin y cos a sin/3 
-sin ot sin y -sin a cos y 

R = sin a cos/3 cos y -sin a cos/3 sin y sin a sin/3 ]. (1) 
+cos a sin y +cos a cos y / 

L -sin/3 cos y sin 13 sin y cos/3 J 

The lengths of the unit-cell edges of the orthogonal 
Eulerian cell in the directions a, /3 and y will be 
called a, b and c respectively. Care should be taken 
not to confuse these unit-cell parameters with the cell 
dimensions of the Patterson functions. 
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The rotation function F(a, /3,  7) may be expressed 
by the integral 

F(a, fl, y ) = ~  Po(X)Pl(Rx) dV, 

where Po and P~ will be referred to respectively as 
the stationary and rotated Patterson functions. The 
integration is usually performed over a spherical 
region of space centred on the origin. If Po and P1 
belong to proper point groups with symmetry ele- 
ments expressed by matrices S O and S ~ then 

F(a, /3, y ) = ~  Po(SOx)P~(RS'x) dV 

=~ Po(x)P~([S°]rRS~x) dV. (2) 

If we write 

R(a',/3', y')=(S°)rR(a,/3, 7)S 1 (3) 

then under certain circumstances (a ' , /3 ' ,  7') is related 
to (a,/3, 7) by a space-group operation. These circum- 
stances are investigated in the Appendix where the 
important result is proved that only Patterson rotation 
axes parallel to the z axis and rotation axes of even 
order perpendicular to the z axis can give rise to 
rotation-function space-group symmetry. 

In the space-group-symmetry derivations given 
below one of S O or S ~ will be set equal to the identity 
matrix I. The space-group symmetry elements pro- 
duced in this way may be combined together to yield 
the symmetry generated from (S°)rRS 1 by using the 
relationship 

( S o) rRSl = ( S o) T[ IRS ~] I. (4) 

If both S o and S ~ are set equal to I then (3) is 
satisfied by two sets of Eulerian angles that give 
identical rotations. 

R(a,/3, 7)= R(~+ ~,-/3, ~+ 7). (5) 
This may be verified by considering the rotations 
performed on the axes or by direct substitution of 
the angles into the matrix elements of R. 

Symmetry elements in Po and P1 

Axes of symmetry parallel to z determine the magni- 
tude of the Eulerian cell dimensions a and c and thus 
determine the nature of the plane of symmetry relating 
(a,/3, 7) to the general equivalent position (Tr+ 
a, -/3, ~r + 7). If a rotation axis is of order p then a 
positive rotation about z of 2~/p is represented by 
the matrix 

[ ~ o s 2 ~ r / p - s i n 2 7 r / p ]  
S(2~r/p) = sin 2~/p cos 2~r/p . (6) 

0 0 

If function Po has an axis of order Po then by consider- 
ing the rotations involved or by matrix multiplication 

Table 1. Rotation-function symmetry elements as a 
function of axial parity 

po and Pl are the orders of the rotation axes parallel to z in the 
stationary and rotated functions respectively. The table indicates 
how the nature of the glide or mirror plane produced in the rotation 
function perpendicular to b depends on the parities of/70 and Pl. 

p o = 2 n + l  p o = 2 n  
p l = 2 n + l  n c 

Pt  = 2 n  a m 

we see that 

R(a-2~ /po ,  /3, y)= S~(2~/po)R(a, /3, Y). (7) 

By putting Sl as the identity matrix in (2) and using 
(7) we see that 

F(a-2~/po, /3,  y) = F(a,/3,  Y)- (8) 

We deduce from this equation that an axis of order 
Po parallel to z in the stationary function gives a 
rotation-function unit-cell dimension a=2w/po. 
Similar reasoning from the equation 

R(a, fl, y+27r/pl)=R(a,/3, y)S~(2~r/p~) (9) 

shows that an axis of order px parallel to z in the 
rotated function gives rise to a cell dimension c = 
2zr/pl. 

The above arguments show that the dimensions of 
the rotation-function unit cell are (2~r/po, 27r, 2¢r/pl). 
The general equivalent position (~r + a, -/3, 1r +/3) in 
(5) is related to (a,/3, 7) by symmetry that depends 
on the parity of Po and p~. For example, if Po is even 
and Pl is odd then ( I t+  a , - /3 ,  ~r+ Y) is congruent to 
(a, -/3, ~r/pl + Y) modulo (2~r/po, 2~r, 2¢r/p~) and 
therefore represents a c glide plane perpendicular to 
b and passing through the origin. The nature of the 
planes of symmetry arising from the four combina- 
tions of parity of Po and Pl is shown in Table 1. 

We now consider axes oriented perpendicular to 
z. The Appendix shows that only twofold axes in this 
position give rise to space-group symmetry. All axes 
of even order contain twofold axes as suboperators 
and therefore all axes of even order give rise to the 
same space-group effects when oriented perpen- 
dicular to z. Consider a twofold axis in the xy plane 
making an angle ~p to the y axis, where ¢ is measured 
in a clockwise direction about z. The twofold rotation 
may be represented by the matrix 

"--cos 2 q ~ - s i n  2~o !1 
S(~)  = - s in  2~p cos 2~o . (10) 

0 0 - 

The space-group effects produced by such a twofold 
axis in Po or P1 may be seen from the following 
equations: 

R(2q~-a ,  ~r+/3, y)=Sff(~o)R(a,/3, 7) (11) 

R(a, ~r+/3 , -2~-7)= R(~,/3, 7)S,(~). (12) 
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Equation (11) shows that a twofold axis perpen- 
dicular to z in the stationary function gives rise to a 
b glide plane perpendicular to a and intersecting the 
a axis at a = - ¢ .  Similarly, (12) shows that a twofold 
axis perpendicular to z in the rotated function pro- 
duces a b glide plane perpendicular to c and intersect- 
ing the c axis at 3' = ~p. 

Thus the presence in Po (or P~) of an axis of even 
order perpendicular to z gives rise to b glide planes 
perpendicular to a (or c). The addition of these planes 
to the monoclinic space group determined by the 
parities of Po and p~ yields an orthorhombic space 
group. 

Cross-rotation space groups 

The arguments in the preceding section show how 
the nature and orientation of the planes of symmetry 
in the rotation function and the relevant cell 
dimensions may be derived from the nature of the 
rotation axes parallel and perpendicular to z in the 
Patterson functions. These symmetry elements com- 
bine together to yield nine possible cross-rotation- 
function space groups, which occur in 16 settings 
relative to the Eulerian axes as shown in the matrix 
in Table 2. Monoclinic space groups occur when no 
axis of even order is perpendicular to z in either 
Patterson function. When such axes do occur then 
orthorhombic symmetry results. 

Many of the rotation space-group settings differ 
from the standard setting shown in International 
Tables for Crystallography (1983). The relevant origin 
may also be non-standard in the case of the ortho- 
rhombic space groups. The orientation of a twofold 
axis in a Patterson rotation group such that it is 
parallel to x (or y) causes the origin to lie on the line 
of intersection of the glide plane perpendicular to 
b with the relevant b glide plane perpendicular to 
a (or c). 

The effect of interchanging the functions associated 
with Po or P1 yields a rotation function defined by 

F'(a, /3, 3,)=~ Po(Rx)P~(x) dV 

=~ Po(x)P~(Rrx)dV. (13) 

Because a transposed matrix R T corresponds to equal 
and opposite Eulerian rotations carried out in the 
reverse order we see that 

and thus 

Rr(a , /3 ,  3,)=R(-3,,-/3,-o~) (14) 

F'(a, /3, 3,)= F(-% -/3, -o¢). (15) 

This shows that F and F '  are related by a twofold 
rotation and accounts for the different settings of the 
same space group that occur in the transposed posi- 
tions in Table 2. 

Table 2. Matrix of cross-rotation space groups as a 
function of axial parity 

Po is the s ta t ionary  funct ion and  PI is the rota ted funct ion.  In  the 
respect ive funct ions  Po and  p~ are the orders  o f  the axes paral lel  
to z and  qo and  ql are the orders  o f  the axes pe rpend icu la r  to z. 
Cell d imens ions  are a =27r /po ,  b =2zr,  c=2~r/pl .  N u m b e r s  in 
parentheses  are the space -g roup  number s  in International Tables 
for Crystallography (1983). 

Pt = 2 n +  1 

q ~ = 2 n + l  
po=2n 

Pl = 2 n +  1 

ql = 2n 
Pl = 2n 

qo=2n+  1 qo=2n 
Po = 2n + 1 Po = 2n Po = 2n + 1 Po = 2n 

Pn Pc Pbn21 Pbc2 I 
(7) (7) (33) (29) 

Pa Pm Pba2 Pbm2 
(7) (6) (32) (28) 

P21nb P2 cb Pbnb Pbcb 
(33) (32) (56) (54) 

P21 ab P2mb Pbab Pbmb 
(29) (28) (54) (49) 

Self-rotation space groups 

The self-rotation function is the auto-correlation of 
the Patterson function; the Patterson functions Po 
and P1 are identical and have the same initial orienta- 
tion. The rotation functions F and F '  are therefore 
identical. From (15) we see that 

F(a, fl, 3,)= F(-3,, -/3, -a) .  (16) 

Physically interpreted this means that equal and 
opposite rotations carded out in the reverse order 
give rise to identical correlations. Self-rotation there- 
fore introduces a new general equivalent position 
( - % - / 3 , - a )  into the rotation space group, which 
corresponds to a twofold axis through the origin and 
parallel to [10T]. Applying the symmetry operation 
indicated in (5) to this new position shows that (7r -  
3/,/3, 7r - a)  is also a new general equivalent position 
of the rotation-function space group. This corre- 
sponds to a diagonal mirror plane through (z r, 0, 0) 
and perpendicular to [ 101 ]. Thus sections of constant 
/3 in self-rotation functions exhibit characteristic 
diagonal mirror lines. 

The fact thai, self-rotation itself gives rise to extra 
symmetry does not seem to have been hitherto recog- 
nized in the literature. Several authors who have 
undertaken self-rotation studies have quoted one of 
the four space groups appropriate to the cross rotation 
of different functions of the same symmetry (Ross- 
mann & Blow, 1962; Rossmann, Ford, Watson & 
Banaszak, 1972; Ammon, Murphy, Sjolin, Wlodawer, 
Holcenberg & Roberts, 1983). These cross-rotation 
space groups occur along the leading diagonal of the 
space-group matrix in Table 2. The correct self-rota- 
tion space groups are obtained by adding a diagonal 
mirror plane to these four groups. The resulting space 
group depends again on the parity of the axes parallel 
and perpendicular to z. The addition of diagonal 
mirrors to the two monoclinic space groups produces 



DAVID S. MOSS 473 

Table3. Matrix o f  self-rotation space groups as a 
~. function o f  axial parity 

Rota t ion  axes paral lel  and  pe rpend icu la r  to z have orders  p and  
q respectively. The  cell d imensions  o f  the primitive cell are a = c = 
2~r/p, b = 2~r. The  centred cells for  the two space groups  not  based  
on  a primit ive lattice have unit-cell  vectors a ' =  a - c ,  b ' =  b and 
e ' =  a + e. Number s  in parentheses  are t h e  space-group numbers  in 
International Tables for Crystallography (1983). 

q=2n+l 

q=2n 

p = 2 n + l  p=2n 

B' ma'2 B' mm2 
(39) (38) 

P42/nbm P42/mbm 
(138) (132) 

orthorhombic space groups based on a non-primitive 
lattice. The space-group unit cell is related to the 
primitive cell by the transformations 

a ' = a - c  

b'=b (17) 

c ' = a + c .  

The addition of diagonal mirrors to the orthorhombic 
space groups produces tetragonal space groups based 
on a primitive Bravais lattice. The self-rotation space 
groups are displayed in Table 3. 

Rotation eonventions 

The convention used in this paper regarding the 
application of Eulerian angles may be termed a zyz 
convention so as to indicate the order in which the 
new axes are chosen for successive rotations. 

The earlier work on the rotation function (Ross- 
mann & Blow, 1962) employed a zxz convention and 
rotation functions computed in this system will have 
the same space-group symmetry but a shift of origin 
in the t~y plane relative to a calculation carried out 
using the order zyz. 

A fundamentally different class of Eulerian conven- 
tions arises when the first and last axes of rotation 
differ. Such conventions have been widely employed 
in crystallography (Sussman, Holbrook, Church & 
Kim, 1977; Scheringer, 1963) but do not appear to 
have been used in the context of the rotation function. 
With these conventions the rotation-function space 
groups arise in different circumstances, which are 
described in the Appendix. 

In this paper the two Patterson functions Po and 
P1 have been called stationary and rotated respec- 
tively. This designation is consistent with Crowther 
& Dodson (1981) but consideration of (13), (14) and 
(15) shows that the arguments in this paper would 
remain unchanged if P~ were regarded as stationary 
and the Eulerian rotations were carded out on P0 in 
the order a/3y and in a counterclockwise sense. Many 
authors (e.g. Rao et al., 1980) view the operation of 
Crowther's (1972) program in this way and therefore 

quote space groups in settings that occur in trans- 
posed positions in Table 2 relative to the settings 
appropriate to the Po stationary convention. 

Discussion 

We may summarize the relationship between the 
Patterson-function rotation symmetry and the rota- 
tion-function space-group symmetry elements in the 
following statements where Po and Pl are the orders 
of the axes parallel to z in the stationary and rotated 
functions respectively. 

(1) The dimensions of the primitive Eulerian cell 
are a = 2~r/po, b = 2¢r and c = 21r/pl. 

(2) A plane of symmetry always exists perpen- 
dicular to b and passes through the origin. The nature 
of this plane of symmetry depends on the parity of 
Po and p~ in a way shown in Table 1. 

(3) Axes of even order perpendicular to z in the 
stationary or rotated functions give rise to b glide 
planes perpendicular to a or e respectively. Such a 
glide plane only passes through the origin if the 
corresponding Patterson axis is parallel to y. 

(4) Self-rotation introduces a diagonal mirror 
plane into the rotation function, which passes through 
the origin and is perpendicular to [101]. 

The practical implication of these statements is that 
a Patterson rotation axis produces the most helpful 
rotation space-group symmetry when oriented 
parallel to z. In these circumstances it produces pure 
translational symmetry. When a Patterson symmetry 
axis is oriented perpendicular to z, space-group sym- 
metry only results when the axis is of even order and 
in this case if the order is greater than two then only 
the twofold component produces space-group sym- 
metry. The b glide plane produced by this orientation 
is less convenient than the translational symmetry 
produced by orientation of the symmetry axis along 
z. It must be clearly understood that the x, y and z 
axes in this discussion are the Cartesian axes about 
which Eulerian rotation takes place and may not be 
parallel to the crystallographic axes having the same 
labels. This is especially true in the case of monoclinic 
Patterson functions where the unique crystallographic 
axis is usually chosen to be parallel to y. 

The above discussion is also applicable when a 
Patterson function has axes of pseudosymmetry that 
may be either intermolecular or intramolecular. Such 
a pseudo-axis when oriented parallel to z will enable 
rotation-function peaks corresponding to the solution 
and the pseudo-solution to be viewed on the same/3 
section where they will have the same Eulerian dis- 
tortion. 

Considerations other than symmetry may some- 
times be relevant when deciding how to orient a 
Patterson function with respect to Eulerian axes. 
Rotation-function space is considerably distorted 
near the sections /3 = 0 and/3 = ¢r where the angles 
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a and 3' are degenerate. The occurrence of peaks 
close to these sections may make interpretation incon- 
venient and in such cases reorienting a Patterson 
function may aid interpretation even if some Patter- 
son symmetry no longer produces such useful effects. 

When the rotation symmetry of a Patterson function 
belongs to a cyclic or dihedral point group then 
alignment parallel to z of the principal symmetry axis 
ensures that each axis gives rise to space-group sym- 
metry in the rotation function. However, in the case 
of the cubic rotation groups 23 and 432, it is not 
possible to align the axes so that they are simul- 
taneously all parallel or perpendicular to z. Hence, 
not all the symmetry axes will produce space-group 
effects in any given rotation function. For example, 
if a Patterson function of rotation group 432 is aligned 
with a fourfold axis parallel to z then only the 422 
subgroup will be effective in producing rotation-func- 
tion space-group symmetry. Each threefold axis will 
give rise to sets of three points within the asymmetric 
unit of the rotation function where the function is 
equal valued. This situation is analogous to the occur- 
rence of non-crystallographic threefold axes in the 
crystal unit cell. In order that one of the threefold 
axes shall produce rotation-function symmetry the 
Patterson function must be oriented with a threefold 
axis parallel to z, in which case symmetry appropriate 
to point group 32 will result. 

A similar problem exists when the Patterson func- 
tion exhibits icosahedral symmetry 532 within the 
radius of integration. In this case the subgroups 52 
or 3 produce rotation-function space-group effects 
according to whether a fivefold or threefold axis is 
parallel to z. 

The author would like to thank his colleagues at 
Birkbeck College and Professor David Blow and Dr 
Eleanor Dodson for many interesting discussions 
about the rotation function. 

APPENDIX 

The purpose of this Appendix is to give a group- 
theoretical description of the origin of rotation- 
function space-group symmetry and to establish the 
conditions under which symmetry elements in the 
Patterson function can produce space-gr0up effects 
in the Eulerian rotation function. 

The group of operations D that leaves the rotation 
function invariant is given by the direct product of 
the point groups Q0 and QI of the two Patterson 
functions. 

D =  QoXQl. (A1) 

As we are only concerned with proper rotations we 
may take Qo and Q~ to be the relevant proper rotation 
groups. Each element of D consists of a pair of 
symmetry operations (So, $1) performed respectively 

on each Patterson function. The group D is not a 
point group and is not, in general, isomorphic with 
a point group. For example, if the rotation point 
group of both Patterson functions is 3 then D is a 
non-cyclic group of order 9. No such non-cyclic point 
group exists. It should be noted that the group D is 
independent of both the relative initial orientation of 
the two Patterson functions and of the angular system 
used to express the relative rotations. 

The parameterization of proper rotations in terms 
of a system of Eulerian angles (or spherical coordi- 
nates) gives rise to a rotation-function space group 
G, which is related to D by a homomorphic mapping 
f : G ~ D .  The nature of this homomorphism is 
described below and the condition for a Patterson 
symmetry element to give rise to symmetry elements 
in G is determined by finding the condition for an 
element of D to have a pre-image in G. 

Let us denote space-group symmetry operations by 
(R[rl, ~'2, "r3) where R is a rotation and "rl, ~'2 and T 3 

are translations parallel to a, b and c in Eulerian 
space. The group of operations H that leaves a rota- 
tion function invariant when applied to Eulerian 
angles is given by 

H = {E[2n~ 7r, 2n27r, 2n3zr} 

+{ml(2nl+ l)'n',2n2"n', (2n3+ l)'tr}. (A2) 

E represents the identity operation, rn represents a 
reflection in a plane perpendicular to b and nl, n2 
and n3 are any integers. H is the kernel of f and is 
an invariant subgroup of G. Each coset of G with 
respect to H has an image in D and the factor group 
G~ H maps one-to-one into D. 

In order to illustrate the above relationships, con- 
sider the rotation of an asymmetric function against 
a monoclinic Patterson with its twofold axis along z. 
In this case the group D has two elements (E, E) and 
(E, 2). The pre-image of (E, E) is H. From (8) one 
pre-image of (E, 2) is (E ~r, 2zr, 2~r). The coset C of 
pre-images is therefore 

C = H(E[Tr, 2"a', 2Ir) 

= {E[(2nl + 1)7r, 2n27r, 2n37r} 

+{m 2n~Tr, 2n2rr, (2n3+ 1)rr}. (A3) 

The rotati0n-functi0n space group may be written as 
the sum of H and its cosets. In this example G = 
H + C, which yields the space group Pc with unit-cell 
lengths (Tr, 2zr, 2~r). The factor group G / H  consists 
of the two elements E and C. This factor group is 
isomorphic with D because all the Patterson-function 
symmetry is expressed as rotation space-group sym- 
metry. In general this is not the case and we need to 
determine from matrix representations the conditions 
for an element of D to have a pre-image in G. 

The nine elements of the rotation matrix R form 
the basis of a nine-dimensional matrix representation 
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{ T} of D. With the direct-product notation (Falicov, 
1966) the 9x9  matrices are given by the direct 
products 

T(il)Uk) 0 1 (A4) = S( joS(u ) 

and (3) can be rewritten 

R(a)(c~',fl', ~ / ' )=EZ T(iouk)Ruk)( a, /3, 3'). (A5) 
j k 

We need to determine the subset of matrices { U} 
{ T} that are such that (a' ,/3',  y') is related to (c~,/3, Y) 
by space-group symmetry. To find { U} we first note 
from (1) that the elements of R may be written in 
terms of three functions g, h and k each possessing 
a different space-group symmetry, 

[ g(a, 13,'y) g(a, 13, 3'+ ¢r/2) h(a, 13) 1 
R=lg(ot-zc/2,13,'y ) g(a-cr/2,13,'y+~'/2) h(ot-cr/2,13).] (A6) 

L h(3,, 13) h(r+ ~r/2,13) k(13) 

Each matrix U must form a linear combination of 
elements of R(c~,/3, y) to yield a function that is of 
appropriate symmetry since space-group operations 
on (a,/3, y) may rotate or translate the functions in 
the rotation matrix but cannot alter their symmetry 
with respect to (a,/3, y). In order to preserve sym- 
metry a matrix U can only form linear combinations 
of those functions in R of the same symmetry. Hence 
matrices in { U} only form linear combinations of the 
first and second columns (or rows) of R and this 
implies that the matrices in {S} must possess the 
canonical form 

S =  d 

0 

(A7) 

and the orthogonality conditions require that a d -  
b c = e = + l .  

If e = +1, S represents a rotation about z and if 
e-- -1  then S represents a twofold rotation perpen- 
dicular to z. Hence, only axes of symmetry parallel 
to z and twofold axes perpendicular to z give rise to 
rotation-function space-group symmetry when the 
definition of Eulerian angles leads to a rotation matrix 
of functional symmetry as shown in (A6). 

The self-rotation symmetry may be treated by 
extending the above theory and the general result is 
that self-rotation introduces extra space-group sym- 
metry when functions of the same symmetry occur in 
transposed positions in the matrix R. The above argu- 

ments may also be used to investigate Eulerian sys- 
tems where the first and third rotations are about 
different axes. In these cases the same rotation-func- 
tion space groups arise but in different circumstances. 
In an xyz  convention the canonical form of (S °} is 
associated with z as in the zyz  system but the canoni- 
cal form of {S 1} implies rotational symmetry about x 
or a twofold axis perpendicular to x. Self-rotation 
does not introduce extra symmetry because the xyz  
convention prevents the Eulerian rotations being car- 
ded out in the reverse order. Instead the self-rotation 
space groups of Table 3 occur in the cross rotation 
of two identical Patterson functions that have initial 
orientations diitedng by a rotation of ~r/2 about the 
y axis. Thus the conditions for symmetry in the rota- 
tion function are less simple when the first and last 
axes of Eulerian rotation are different and the con- 
ventional choice, where these axes are identical, 
represents the optimum Eulerian system for rotation- 
function studies. 

The rotation function has been expressed in terms 
of spherical polar coordinates but inspection of the 
relevant rotation matrix (Rossmann & Blow, 1962) 
shows that no rows (or columns) have corresponding 
functions of the same symmetry. Such functions only 
occur in transposed positions, hence only self-rota- 
tion can introduce extra space-group symmetry in this 
coordinate system. 
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